Friday, April 24, 2009

Hepatitis

Hepatitis (plural hepatitides) implies injury to the liver characterized by the presence of inflammatory cells in the tissue of the organ. The name is from ancient Greek hepar (ηπαρ), the root being hepat- (ηπατ-), meaning liver, and suffix -itis, meaning "inflammation" (c. 1727). The condition can be self-limiting, healing on its own, or can progress to scarring of the liver. Hepatitis is acute when it lasts less than six months and chronic when it persists longer. A group of viruses known as the hepatitis viruses cause most cases of liver damage worldwide. Hepatitis can also be due to toxins (notably alcohol), other infections or from autoimmune process. It may run a subclinical course when the affected person may not feel ill. The patient becomes unwell and symptomatic when the disease impairs liver functions that include, among other things, removal of harmful substances, regulation of blood composition, and production of bile to help digestion.
Causes

Acute

* Viral hepatitis: Hepatitis A through E (more than 95% of viral cause), Herpes simplex, Cytomegalovirus, Epstein-Barr, yellow fever virus, adenoviruses.
* Non viral infection: toxoplasma, Leptospira, Q fever, rocky mountain spotted fever
* Alcohol
* Toxins: Amanita toxin in mushrooms, carbon tetrachloride, asafetida
* Drugs: Paracetamol, amoxycillin, antituberculosis medicines, minocycline and many others (see longer list below).
* Ischemic hepatitis (circulatory insufficiency)
* Pregnancy
* Auto immune conditions, e.g. Systemic Lupus Erythematosus (SLE)
* Metabolic diseases, e.g. Wilson's disease

Chronic

* Viral hepatitis: Hepatitis B with or without hepatitis D, hepatitis C (neither hepatitis A nor hepatitis E causes chronic hepatitis)
* Autoimmune: Autoimmune hepatitis
* Alcohol
* Drugs: methyldopa, nitrofurantoin, isoniazid, ketoconazole
* Non-alcoholic steatohepatitis
* Heredity: Wilson's disease, alpha 1-antitrypsin deficiency
* Primary biliary cirrhosis and primary sclerosing cholangitis occasionally mimic chronic hepatitis
Symptoms

Acute

Clinically, the course of acute hepatitis varies widely from mild symptoms requiring no treatment to fulminant hepatic failure needing liver transplantation. Acute viral hepatitis is more likely to be asymptomatic in younger people. Symptomatic individuals may present after convalescent stage of 7 to 10 days, with the total illness lasting 2 to 6 weeks.

Initial features are of nonspecific flu-like symptoms, common to almost all acute viral infections and may include malaise, muscle and joint aches, fever, nausea or vomiting, diarrhea, and headache. More specific symptoms, which can be present in acute hepatitis from any cause, are: profound loss of appetite, aversion to smoking among smokers, dark urine, yellowing of the eyes and skin (i.e., jaundice) and abdominal discomfort. Physical findings are usually minimal, apart from jaundice (33%) and tender hepatomegaly (10%). There can be occasional lymphadenopathy (5%) or splenomegaly (5%)

Chronic

Majority of patients will remain asymptomatic or mildly symptomatic, abnormal blood tests being the only manifestation. Features may be related to the extent of liver damage or the cause of hepatitis. Many experience return of symptoms related to acute hepatitis. Jaundice can be a late feature and may indicate extensive damage. Other features include abdominal fullness from enlarged liver or spleen, low grade fever and fluid retention (ascites). Extensive damage and scarring of liver (i.e., cirrhosis) leads to weight loss, easy bruising and bleeding tendencies. Acne, abnormal menstruation, lung scarring, inflammation of the thyroid gland and kidneys may be present in women with autoimmune hepatitis.

Findings on clinical examination are usually those of cirrhosis or are related to aetiology.

Types

Most cases of acute hepatitis are due to viral infections:

* Hepatitis A
* Hepatitis B
* Hepatitis C
* Hepatitis B with D
* Hepatitis E
* Hepatitis F virus (existence unknown)
* Hepatitis G, or GBV-C
* In addition to the hepatitis viruses (please note that the hepatitis viruses are not all related), other viruses can also cause hepatitis, including cytomegalovirus, Epstein-Barr virus, yellow fever, etc.

Other viral causes

Other viral infections can cause hepatitis (inflammation of the liver):

* Mumps virus
* Rubella virus
* Cytomegalovirus
* Epstein-Barr virus
* Other herpes viruses

Alcoholic hepatitis
Main article: Alcoholic hepatitis

Ethanol, mostly in alcoholic beverages, is a significant cause of hepatitis. Usually alcoholic hepatitis comes after a period of increased alcohol consumption. Alcoholic hepatitis is characterized by a variable constellation of symptoms, which may include feeling unwell, enlargement of the liver, development of fluid in the abdomen ascites, and modest elevation of liver blood tests. Alcoholic hepatitis can vary from mild with only liver test elevation to severe liver inflammation with development of jaundice, prolonged prothrombin time, and liver failure. Severe cases are characterized by either obtundation (dulled consciousness) or the combination of elevated bilirubin levels and prolonged prothrombin time; the mortality rate in both categories is 50% within 30 days of onset.

Alcoholic hepatitis is distinct from cirrhosis caused by long term alcohol consumption. Alcoholic hepatitis can occur in patients with chronic alcoholic liver disease and alcoholic cirrhosis. Alcoholic hepatitis by itself does not lead to cirrhosis, but cirrhosis is more common in patients with long term alcohol consumption. Patients who drink alcohol to excess are also more often than others found to have hepatitis C.[citation needed] The combination of hepatitis C and alcohol consumption accelerates the development of cirrhosis.
Drug induced
Main article: Hepatotoxicity

A large number of drugs can cause hepatitis:

* Allopurinol
* Amitriptyline (antidepressant)
* Amiodarone (antiarrhythmic)
* Atomoxetine [8]
* Azathioprine[9]
* Halothane (a specific type of anesthetic gas)
* Hormonal contraceptives
* Ibuprofen and indomethacin (NSAIDs)
* Isoniazid (INH), rifampicin, and pyrazinamide (tuberculosis-specific antibiotics)
* Ketoconazole (antifungal)
* Loratadine (antihistamine)
* Methotrexate (immune suppressant)
* Methyldopa (antihypertensive)
* Minocycline (tetracycline antibiotic)
* Nifedipine (antihypertensive)
* Nitrofurantoin (antibiotic)
* Paracetamol (acetaminophen in the United States) can cause hepatitis when taken in an overdose. The severity of liver damage may be limited by prompt administration of acetylcysteine.
* Phenytoin and valproic acid (antiepileptics)
* Troglitazone (antidiabetic, withdrawn in 2000 for causing hepatitis)
* Zidovudine (antiretroviral i.e. against HIV)
* Some herbs and nutritional supplements[10]

The clinical course of drug-induced hepatitis is quite variable, depending on the drug and the patient's tendency to react to the drug. For example, halothane hepatitis can range from mild to fatal as can INH-induced hepatitis. Hormonal contraception can cause structural changes in the liver. Amiodarone hepatitis can be untreatable since the long half life of the drug (up to 60 days) means that there is no effective way to stop exposure to the drug. Statins can cause elevations of liver function blood tests normally without indicating an underlying hepatitis. Lastly, human variability is such that any drug can be a cause of hepatitis.

Other toxins


Other Toxins can cause hepatitis:

* Amatoxin-containing mushrooms, including the Death Cap (Amanita phalloides), the Destroying Angel (Amanita ocreata), and some species of Galerina. A portion of a single mushroom can be enough to be lethal (10 mg or less of α-amanitin).
* White phosphorus, an industrial toxin and war chemical.
* Carbon tetrachloride ("tetra", a dry cleaning agent), chloroform, and trichloroethylene, all chlorinated hydrocarbons, cause steatohepatitis (hepatitis with fatty liver).
* Cylindrospermopsin, a toxin from the cyanobacterium Cylindrospermopsis raciborskii and other cyanobacteria.

Metabolic disorders

Some metabolic disorders cause different forms of hepatitis. Hemochromatosis (due to iron accumulation) and Wilson's disease (copper accumulation) can cause liver inflammation and necrosis.

Non-alcoholic steatohepatitis (NASH) is effectively a consequence of metabolic syndrome.

Obstructive

"Obstructive jaundice" is the term used to describe jaundice due to obstruction of the bile duct (by gallstones or external obstruction by cancer). If longstanding, it leads to destruction and inflammation of liver tissue.

Autoimmune

Main article: Autoimmune hepatitis

Anomalous presentation of human leukocyte antigen (HLA) class II on the surface of hepatocytes, possibly due to genetic predisposition or acute liver infection; causes a cell-mediated immune response against the body's own liver, resulting in autoimmune hepatitis.

Alpha 1-antitrypsin deficiency

In severe cases of alpha 1-antitrypsin deficiency (A1AD), the accumulated protein in the endoplasmic reticulum causes liver cell damage and inflammation.

Non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is the occurrence of fatty liver in people who have no history of alcohol use. It is most commonly associated with obesity (80% of all obese people have fatty liver). It is more common in women. Severe NAFLD leads to inflammation, a state referred to as non-alcoholic steatohepatitis (NASH), which on biopsy of the liver resembles alcoholic hepatitis (with fat droplets and inflammatory cells, but usually no Mallory bodies).

The diagnosis depends on medical history, physical exam, blood tests, radiological imaging and sometimes a liver biopsy. The initial evaluation to identify the presence of fatty infiltration of the liver is medical imaging, including such ultrasound, computed tomography (CT), or magnetic resonance (MRI). However, imaging cannot readily identify inflammation in the liver. Therefore, the differentiation between steatosis and NASH often requires a liver biopsy. It can also be difficult to distinguish NASH from alcoholic hepatitis when the patient has a history of alcohol consumption. Sometimes in such cases a trial of abstinence from alcohol along with follow-up blood tests and a repeated liver biopsy are required.

NASH is becoming recognized as the most important cause of liver disease second only to hepatitis C in numbers of patients going on to cirrhosis.[citation needed]

Ischemic hepatitis



Ischemic hepatitis is caused by decreased circulation to the liver cells. Usually this is due to decreased blood pressure (or shock), leading to the equivalent term "shock liver". Patients with ischemic hepatitis are usually very ill due to the underlying cause of shock. Rarely, ischemic hepatitis can be caused by local problems with the blood vessels that supply oxygen to the liver (such as thrombosis, or clotting of the hepatic artery which partially supplies blood to liver cells). Blood testing of a person with ischemic hepatitis will show very high levels of transaminase enzymes (AST and ALT), which may exceed 1000 U/L. The elevation in these blood tests is usually transient (lasting 7 to 10 days). It is rare that liver function will be affected by ischemic hepatitis.

Hepatitis A

Hepatitis A (formerly known as infectious hepatitis) is an acute infectious disease of the liver caused by the hepatitis A virus (HAV), which is most commonly transmitted by the fecal-oral route via contaminated food or drinking water. Every year, approximately 10 million people worldwide are infected with the virus. The time between infection and the appearance of the symptoms, (the incubation period), is between two and six weeks and the average incubation period is 28 days.

In developing countries, and in regions with poor hygiene standards, the incidence of infection with this virus is high and the illness is usually contracted in early childhood. HAV has also been found in samples taken to study ocean water quality. Hepatitis A infection causes no clinical signs and symptoms in over 90% of these children and since the infection confers lifelong immunity, the disease is of no special significance to the indigenous population. In Europe, the United States and other industrialized countries, on the other hand, the infection is contracted primarily by susceptible young adults, most of whom are infected with the virus during trips to countries with a high incidence of the disease.

Hepatitis A does not have a chronic stage and does not cause permanent liver damage. Following infection, the immune system makes antibodies against HAV that confer immunity against future infection. The disease can be prevented by vaccination and hepatitis A vaccine has been proven effective in controlling outbreaks worldwide.
Prevention
For about the vaccine, its properties, and its application, see Hepatitis A vaccine.

Hepatitis A can be prevented by vaccination, good hygiene and sanitation. Hepatitis A is also one of the main reasons not to surf or go in the ocean after rains in coastal areas that are known to have bad runoff.

The vaccine protects against HAV in more than 95% of cases for 10 years. It contains inactivated Hepatitis A virus providing active immunity against a future infection. The vaccine was first phased in 1996 for children in high-risk areas, and in 1999 it was spread to areas with elevating levels of infection.

The vaccine is given in two doses in the muscle of the upper arm. The first dose provides protection two to four weeks after initial vaccination; the second booster dose, given six to twelve months later, provides protection for up to twenty years.

Symptoms

Early symptoms of hepatitis A infection can be mistaken for influenza, but some sufferers, especially children, exhibit no symptoms at all. Symptoms typically appear 2 to 6 weeks, (the incubation period ), after the initial infection.[19]

Symptoms can return over the following 6-9 months which include:[20]

* Fatigue
* Fever
* Abdominal pain
* Nausea
* Diarrhea
* Appetite loss
* Depression
* Jaundice, a yellowing of the skin or whites of the eyes
* Sharp pains in the right-upper quadrant of the abdomen
* Weight loss
* Itching

[edit] Diagnosis
Serum IgG, IgM and ALT following Hepatitis A virus infection

Although HAV is excreted in the feces towards the end of the incubation period, specific diagnosis is made by the detection of HAV-specific IgM antibodies in the blood.[21] IgM antibody is only present in the blood following an acute hepatitis A infection. It is detectable from one to two weeks after the initial infection and persists for up to 14 weeks. The presence of IgG antibody in the blood means that the acute stage of the illness is past and the person is immune to further infection. IgG antibody to HAV is also found in the blood following vaccination and tests for immunity to the virus are based on the detection of this antibody.[21]

During the acute stage of the infection, the liver enzyme alanine transferase (ALT) is present in the blood at levels much higher than is normal. The enzyme comes from the liver cells that have been damaged by the virus.

Hepatitis A virus is present in the blood, (viremia), and feces of infected people up to two weeks before clinical illness develops.

Prognosis

The United States Centers for Disease Control and Prevention (CDC) in 1991 reported a low mortality rate for hepatitis A of 4 deaths per 1000 cases for the general population but a higher rate of 17.5 per 1000, in those aged 50 and over. Death usually occurs when the patient contracts Hepatitis A while already suffering from another form of Hepatitis, such as Hepatitis B or Hepatitis C or AIDS.

Young children who are infected with hepatitis A typically have a milder form of the disease, usually lasting from 1-3 weeks, whereas adults tend to experience a much more severe form of the disease.[citation needed]

Treatment

There is no specific treatment for hepatitis A. Sufferers are advised to rest, avoid fatty foods and alcohol (these may be poorly tolerated for some additional months during the recovery phase and cause minor relapses), eat a well-balanced diet, and stay hydrated. Approximately 15% of people diagnosed with hepatitis A may experience one or more symptomatic relapse(s) for up to 24 months after contracting this disease.

Hepatitis B

patitis B is a disease caused by hepatitis B virus which infects the liver of hominoidae, including humans, and causes an inflammation called hepatitis. Originally known as "serum hepatitis", the disease has caused epidemics in parts of Asia and Africa, and it is endemic in China. About a third of the world's population, more than 2 billion people, have been infected with the hepatitis B virus. This includes 350 million chronic carriers of the virus. Transmission of hepatitis B virus results from exposure to infectious blood or body fluids containing blood.

The acute illness causes liver inflammation, vomiting, jaundice and—rarely—death. Chronic hepatitis B may eventually cause liver cirrhosis and liver cancer—a fatal disease with very poor response to current chemotherapy. The infection is preventable by vaccination.

Hepatitis B virus is an hepadnavirus—hepa from hepatotrophic and dna because it is a DNA virus)—and it has a circular genome composed of partially double-stranded DNA. The viruses replicate through an RNA intermediate form by reverse transcription, and in this respect they are similar to retroviruses. Although replication takes place in the liver, the virus spreads to the blood where virus-specific proteins and their corresponding antibodies are found in infected people. Bloods test for these proteins and antibodies are used to diagnose the infection.

Medical aspects

Prevention

Main article: Hepatitis B vaccine
HBsAg

Several vaccines have been developed for the prevention of hepatitis B virus infection. These rely on the use of one of the viral envelope proteins (hepatitis B surface antigen or HBsAg). The vaccine was originally prepared from plasma obtained from patients who had long-standing hepatitis B virus infection. However, currently, these are more often made using recombinant DNA technology, though plasma-derived vaccines continue to be used; the two types of vaccines are equally effective and safe.

Following vaccination Hepatitis B Surface antigen may be detected in serum for several days; this is known as vaccine antigenaemia. Vaccine is generally administered in either a two, three, or four dose schedules; and can be received by infants to adults. It provides protection for 85-90% of individuals, and lasts for 23 years.

Unlike Hepatitis A, Hepatitis B does not generally spread through water and food. Instead, it is transmitted through body fluids, from which prevention is taken to avoid: unprotected sexual contact, blood transfusions, re-use of contaminated needles and syringes, and vertical transmission during child birth. Infants may be vaccinated at birth.

[edit] Symptoms

Acute infection with hepatitis B virus is associated with acute viral hepatitis - an illness that begins with general ill-health, loss of appetite, nausea, vomiting, body aches, mild fever, dark urine, and then progresses to development of jaundice. It has been noted that itchy skin has been an indication as a possible symptom of all hepatitis virus types. The illness lasts for a few weeks and then gradually improves in most affected people. A few patients may have more severe liver disease (fulminant hepatic failure), and may die as a result of it. The infection may be entirely asymptomatic and may go unrecognized.

Chronic infection with Hepatitis B virus may be either asymptomatic or may be associated with a chronic inflammation of the liver (chronic hepatitis), leading to cirrhosis over a period of several years. This type of infection dramatically increases the incidence of hepatocellular carcinoma (liver cancer). Chronic carriers are encouraged to avoid consuming alcohol as it increases their risk for cirrhosis and liver cancer. Hepatitis B virus has been linked to the development of Membranous glomerulonephritis (MGN).

Diagnosis

Hepatitis B viral antigens and antibodies detectable in the blood following acute infection.
Hepatitis B viral antigens and antibodies detectable in the blood of a chronically infected person

The tests, called assays, for detection of hepatitis B virus infection involve serum or blood tests that detect either viral antigens (proteins produced by the virus) or antibodies produced by the host. Interpretation of these assays is complex.

The hepatitis B surface antigen (HBsAg) is most frequently used to screen for the presence of this infection. It is the first detectable viral antigen to appear during infection. However, early in an infection, this antigen may not be present and it may be undetectable later in the infection as it is being cleared by the host. The infectious virion contains an inner "core particle" enclosing viral genome. The icosahedral core particle is made of 180 or 240 copies of core protein, alternatively known as hepatitis B core antigen, or HBcAg. During this 'window' in which the host remains infected but is successfully clearing the virus, IgM antibodies to the hepatitis B core antigen (anti-HBc IgM) may be the only serological evidence of disease.

Shortly after the appearance of the HBsAg, another antigen named as the hepatitis B e antigen (HBeAg) will appear. Traditionally, the presence of HBeAg in a host's serum is associated with much higher rates of viral replication and enhanced infectivity; however, variants of the hepatitis B virus do not produce the 'e' antigen, so this rule does not always hold true. During the natural course of an infection, the HBeAg may be cleared, and antibodies to the 'e' antigen (anti-HBe) will arise immediately afterwards. This conversion is usually associated with a dramatic decline in viral replication.

If the host is able to clear the infection, eventually the HBsAg will become undetectable and will be followed by IgG antibodies to the hepatitis B surface antigen and core antigen, (anti-HBs and anti HBc IgG). A person negative for HBsAg but positive for anti-HBs has either cleared an infection or has been vaccinated previously.

Individuals who remain HBsAg positive for at least six months are considered to be hepatitis B carriers. Carriers of the virus may have chronic hepatitis B, which would be reflected by elevated serum alanine aminotransferase levels and inflammation of the liver, as revealed by biopsy. Carriers who have seroconverted to HBeAg negative status, particularly those who acquired the infection as adults, have very little viral multiplication and hence may be at little risk of long-term complications or of transmitting infection to other

More recently, PCR tests have been developed to detect and measure the amount of viral nucleic acid in clinical specimens. These tests are called viral loads and are used to assess a person's infection status and to monitor treatment.[34]

Prognosis

Hepatitis B virus infection may either be acute (self-limiting) or chronic (long-standing). Persons with self-limiting infection clear the infection spontaneously within weeks to months.

Children are less likely than adults to clear the infection. More than 95% of people who become infected as adults or older children will stage a full recovery and develop protective immunity to the virus. However, only 5% of newborns that acquire the infection from their mother at birth will clear the infection. This population has a 40% lifetime risk of death from cirrhosis or hepatocellular carcinoma. Of those infected between the age of one to six, 70% will clear the infection.

Hepatitis D infection can only occur with a concomitant infection with Hepatitis B virus because the Hepatitis D virus uses the Hepatitis B virus surface antigen to form a capsid. Co-infection with hepatitis D increases the risk of liver cirrhosis and liver cancer.Polyarteritis nodosa is more common in people with hepatitis B infection.

Treatment

Acute hepatitis B infection does not usually require treatment because most adults clear the infection spontaneously. Early antiviral treatment may only be required in fewer than 1% of patients, whose infection takes a very aggressive course ("fulminant hepatitis") or who are immunocompromised. On the other hand, treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy.

Although none of the available drugs can clear the infection, they can stop the virus from replicating, and minimize liver damage such as cirrhosis and liver cancer. Currently, there are seven medications licensed for treatment of hepatitis B infection in the United States. These include antiviral drugs lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka) and entecavir (Baraclude) and the two immune system modulators interferon alpha-2a and pegylated interferon alfa-2a (Pegasys). The use of interferon, which requires injections daily or thrice weekly, has been supplanted by long-acting pegylated interferon, which is injected only once weekly.[35] However, some individuals are much more likely to respond than others and this might be because of the genotype of the infecting virus or the patient's heredity. The treatment works by reducing the viral load, (the amount of virus particles as measured in the blood), which in turn reduces viral replication in the liver.

Infants born to mothers known to carry hepatitis B can be treated with antibodies to the hepatitis B virus (hepatitis B immune globulin or HBIg). When given with the vaccine within twelve hours of birth, the risk of acquiring hepatitis B is reduced 95%. This treatment allows a mother to safely breastfeed her child.

Reactivation

Hepatitis B virus DNA persists in the body after infection and in some people the disease recurs. Although rare, reactivation is seen most often in people with impaired immunity.

Hepatitis B goes through cycles of replication and non-replication. Approximately 50% of patients experience acute reactivation. Male patients with baseline ALT of 200 UL/L are three times more likely to develop a reactivation than patients with lower levels. Patients who undergo chemotherapy are at risk for HBV reactivation. The current view are that immunosuppressive drugs favor increased HBV replication while inhibiting cytotoxic T cell function in the liver.

Hepatitis C

Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV). The infection is often asymptomatic, but once established, chronic infection can progress to scarring of the liver (fibrosis), and advanced scarring (cirrhosis). In some cases, those with cirrhosis will go on to develop liver failure or other complications of cirrhosis, including liver cancer.

The hepatitis C virus (HCV) is spread by blood-to-blood contact. Most people have few symptoms after the initial infection, yet the virus persists in the liver in about 80% of those infected. Persistent infection can be treated with medication, such as interferon and ribavirin, and currently over half are cured overall. Those who develop cirrhosis or liver cancer may require a liver transplant, although the virus generally recurs after transplantion.

An estimated 150-200 million people worldwide are infected with hepatitis C. Apart from humans, it only infects chimpanzees. No vaccine against hepatitis C is available. The existence of hepatitis C (originally "non-A non-B hepatitis") was postulated in the 1970s and proved conclusively in 1989. It is one of five known hepatitis viruses: A, B, C, D, and E.


Signs and symptoms
Acute

Acute hepatitis C refers to the first 6 months after infection with HCV. Between 60% to 70% of people infected develop no symptoms during the acute phase. In the minority of patients who experience acute phase symptoms, they are generally mild and nonspecific, and rarely lead to a specific diagnosis of hepatitis C. Symptoms of acute hepatitis C infection include decreased appetite, fatigue, abdominal pain, jaundice, itching, and flu-like symptoms.

The hepatitis C virus is usually detectable in the blood within one to three weeks after infection by PCR, and antibodies to the virus are generally detectable within 3 to 15 weeks. Approximately 15-40% of persons infected with HCV clear the virus from their bodies during the acute phase as shown by normalization in liver function tests (LFTs) such as alanine transaminase (ALT) & aspartate transaminase (AST) normalization, as well as plasma HCV-RNA clearance (this is known as spontaneous viral clearance). The remaining 60-85% of patients infected with HCV develop chronic hepatitis C, i.e., infection lasting more than 6 months.

Previous practice was to not treat acute infections to see if the person would spontaneously clear; recent studies have shown that treatment during the acute phase of genotype 1 infections has a greater than 90% success rate with half the treatment time required for chronic infections.
Chronic

Chronic hepatitis C is defined as infection with the hepatitis C virus persisting for more than six months. Clinically, it is often asymptomatic (without symptoms) and it is mostly discovered accidentally.

The natural course of chronic hepatitis C varies considerably from one person to another. Virtually all people infected with HCV have evidence of inflammation on liver biopsy, however, the rate of progression of liver scarring (fibrosis) shows significant variability among individuals. Recent data suggest that among untreated patients, roughly one-third progress to liver cirrhosis in less than 20 years. Another third progress to cirrhosis within 30 years. The remainder of patients appear to progress so slowly that they are unlikely to develop cirrhosis within their lifetimes. Factors that have been reported to influence the rate of HCV disease progression include age (increasing age associated with more rapid progression), gender (males have more rapid disease progression than females), alcohol consumption (associated with an increased rate of disease progression), HIV coinfection (associated with a markedly increased rate of disease progression), and fatty liver (the presence of fat in liver cells has been associated with an increased rate of disease progression).

Symptoms specifically suggestive of liver disease are typically absent until substantial scarring of the liver has occurred. However, hepatitis C is a systemic disease and patients may experience a wide spectrum of clinical manifestations ranging from an absence of symptoms to a more symptomatic illness prior to the development of advanced liver disease. Generalized signs and symptoms associated with chronic hepatitis C include fatigue, flu-like symptoms, joint pains, itching, sleep disturbances, appetite changes, nausea, and depression.

Once chronic hepatitis C has progressed to cirrhosis, signs and symptoms may appear that are generally caused by either decreased liver function or increased pressure in the liver circulation, a condition known as portal hypertension. Possible signs and symptoms of liver cirrhosis include ascites (accumulation of fluid in the abdomen), bruising and bleeding tendency, varices (enlarged veins, especially in the stomach and esophagus), jaundice, and a syndrome of cognitive impairment known as hepatic encephalopathy. Hepatic encephalopathy is due to the accumulation of ammonia and other substances normally cleared by a healthy liver.

Liver function tests show variable elevation of ALT and AST. Periodically they might show normal results. In fact in 40 % of patients, according to the National Institute of Health liver enzymes will be in the normal range quite constantly, usually in the higher ranges of normal. Usually prothrombin and albumin results are normal, but may become abnormal, once cirrhosis has developed. The level of elevation of liver tests do not correlate well with the amount of liver injury on biopsy. Viral genotype and viral load also do not correlate with the amount of liver injury. Liver biopsy is the best test to determine the amount of scarring and inflammation. Radiographic studies such as ultrasound or CT scan do not show liver injury until it is fairly advanced. Ultrasound however can show if fatty liver is present, even early on, and a new test (Elastography)is now available, totally non invasive, which can test the stiffness of the liver. Elastography—which uses an ultrasound machine to detect the elasticity or stiffness of the liver—has proved in some studies to be quite effective. The stiffer the liver, the more likely it is to have damage. This noninvasive method has gained increasing acceptance in Europe, but it is not yet widely available in the United States or New Zealand outside research settings.It is regarded as being more accurate than liver biopsy, since liver biopsy results depend on where the needle is inserted. One part of the liver may be in better shape than another. To determine the method’s accuracy in a U.S. population of people infected with HCV, Gregory Kirk, MD, PhD, from Johns Hopkins University in Baltimore, and his colleagues enrolled 192 HCV-infected patients participating in two Maryland cohorts to compare elastography and biopsy results. Most of the patients were male, African American and coinfected with HCV and HIV.

Kirk and his colleagues found that elastography results matched the results of liver biopsies about 85 percent of the time. In the remaining cases where there was disparity in the results, most people had an elastography score indicating more liver damage than was found in the biopsy. The authors conclude that elastography could be useful in large clinical studies and that the technology could one day achieve greater accuracy.

Chronic hepatitis C, more than other forms of hepatitis, can be associated with extrahepatic manifestations associated with the presence of HCV such as porphyria cutanea tarda, cryoglobulinemia (a form of small-vessel vasculitis) and glomerulonephritis (inflammation of the kidney), specifically membranoproliferative glomerulonephritis (MPGN). Hepatitis C is also rarely associated with sicca syndrome (an autoimmune disorder), thrombocytopenia, lichen planus, diabetes mellitus and with B-cell lymphoproliferative disorders.

Virology
Hepatitis C infection in the US by source. (CDC,n.d.[dead link])
Main article: Hepatitis C virus

The Hepatitis C virus (HCV) is a small (50 nm in size), enveloped, single-stranded, positive sense RNA virus. It is the only known member of the hepacivirus genus in the family Flaviviridae. There are six major genotypes of the hepatitis C virus, which are indicated numerically (e.g., genotype 1, genotype 2, etc.).

The hepatitis C virus (HCV) is transmitted by blood-to-blood contact. In developed countries, it is estimated that 90% of persons with chronic HCV infection were infected through transfusion of unscreened blood or blood products or via injecting drug use or, by inhalational drug use. Inhalational drug usage (snorting) has evolved into one of the most common means of infection in the United States. In developing countries, the primary sources of HCV infection are unsterilized injection equipment and infusion of inadequately screened blood and blood products. There has not been a documented transfusion-related case of hepatitis C in the United States for over a decade as the blood supply is vigorously screened with both EIA and PCR technologies.

Although injection drug use and inhalational drugs are the most common routes of HCV infection, any practice, activity, or situation that involves blood-to-blood exposure can potentially be a source of HCV infection. The virus may be sexually transmitted, although this is rare, and usually only occurs when an STD (like HIV) is also present and makes blood contact more likely.

Transmission

Injection drug use

Those who currently use or have used drug injection as their delivery route for illicit drugs are at increased risk for getting hepatitis C because they may be sharing needles or other drug paraphernalia (includes cookers, cotton, spoons, water, etc.), which may be contaminated with HCV-infected blood. An estimated 60% to 80% of intravenous recreational drug users in the United States have been infected with HCV.[10] Harm reduction strategies are encouraged in many countries to reduce the spread of hepatitis C, through education, provision of clean needles and syringes, and safer injecting techniques.

Drug use by nasal inhalation (Drugs that are "snorted")

Transmission of HCV is possible through the nasal inhalation (insuffulation) of drugs when straws (containing even trace amounts of mucus and blood) are shared among users.

Blood products

Blood transfusion, blood products, or organ transplantation prior to implementation of HCV screening (in the U.S., this would refer to procedures prior to 1992) is a decreasing risk factor for hepatitis C.

The virus was first isolated in 1989 and reliable tests to screen for the virus were not available until 1992. Therefore, those who received blood or blood products prior to the implementation of screening the blood supply for HCV may have been exposed to the virus. Blood products include clotting factors (taken by hemophiliacs), immunoglobulin, Rhogam, platelets, and plasma. In 2001, the Centers for Disease Control and Prevention reported that the risk of HCV infection from a unit of transfused blood in the United States is less than one per million transfused units.

Iatrogenic medical or dental exposure

People can be exposed to HCV via inadequately or improperly sterilized medical or dental equipment. Equipment that may harbor contaminated blood if improperly sterilized includes needles or syringes, hemodialysis equipment, oral hygiene instruments, and jet air guns, etc. Scrupulous use of appropriate sterilization techniques and proper disposal of used equipment can reduce the risk of iatrogenic exposure to HCV to virtually zero.

Occupational exposure to blood

Medical and dental personnel, first responders (e.g., firefighters, paramedics, emergency medical technicians, law enforcement officers), and military combat personnel can be exposed to HCV through accidental exposure to blood through accidental needlesticks or blood spatter to the eyes or open wounds. Universal precautions to protect against such accidental exposures significantly reduce the risk of exposure to HCV.

Recreational exposure to blood

Contact sports and other activities, such as "slam dancing" that may result in accidental blood-to-blood exposure are potential sources of exposure to HCV.

Sexual exposure

Sexual transmission of HCV is considered to be rare. Studies show the risk of sexual transmission in heterosexual, monogamous relationships is extremely rare or even null. The CDC does not recommend the use of condoms between long-term monogamous discordant couples (where one partner is positive and the other is negative).However, because of the high prevalence of hepatitis C, this small risk may translate into a non-trivial number of cases transmitted by sexual routes. Vaginal penetrative sex is believed to have a lower risk of transmission than sexual practices that involve higher levels of trauma to anogenital mucosa (anal penetrative sex, fisting, use of sex toys).

Body piercings and tattoos

Tattooing dyes, ink pots, stylets and piercing implements can transmit HCV-infected blood from one person to another if proper sterilization techniques are not followed. Tattoos or piercings performed before the mid 1980s, "underground," or non-professionally are of particular concern since sterile techniques in such settings may have been or be insufficient to prevent disease. Despite these risks, it is rare for tattoos to be directly associated with HCV infection and the U.S. Centers for Disease Control and Prevention's position on this subject states that, "no data exist in the United States indicating that persons with exposures to tattooing alone are at increased risk for HCV infection.

Shared personal care items

Personal care items such as razors, toothbrushes, cuticle scissors, and other manicuring or pedicuring equipment can easily be contaminated with blood. Sharing such items can potentially lead to exposure to HCV. Appropriate caution should be taken regarding any medical condition which results in bleeding such as canker sores, cold sores, and immediately after flossing.

HCV is not spread through casual contact such as hugging, kissing, or sharing eating or cooking utensils.

Vertical transmission

Vertical transmission refers to the transmission of a communicable disease from an infected mother to her child during the birth process. Mother-to-child transmission of hepatitis C has been well described, but occurs relatively infrequently. Transmission occurs only among women who are HCV RNA positive at the time of delivery; the risk of transmission in this setting is approximately 6 out of 100. Among women who are both HCV and HIV positive at the time of delivery, the risk of transmitting HCV is increased to approximately 25 out of 100.

The risk of vertical transmission of HCV does not appear to be associated with method of delivery or breastfeeding.

Diagnosis
Cirrhosis of the liver and liver cancer may ensue from hepatitis C.
Serologic profile of Hepatitis C infection

The diagnosis of "hepatitis C" is rarely made during the acute phase of the disease because the majority of people infected experience no symptoms during this phase of the disease. Those who do experience acute phase symptoms are rarely ill enough to seek medical attention. The diagnosis of chronic phase hepatitis C is also challenging due to the absence or lack of specificity of symptoms until advanced liver disease develops, which may not occur until decades into the disease.

Chronic hepatitis C may be suspected on the basis of the medical history (particularly if there is any history of IV drug abuse or inhaled substance usage such as cocaine), a history of piercings or tattoos, unexplained symptoms, or abnormal liver enzymes or liver function tests found during routine blood testing. Occasionally, hepatitis C is diagnosed as a result of targeted screening such as blood donation (blood donors are screened for numerous blood-borne diseases including hepatitis C) or contact tracing.

Hepatitis C testing begins with serological blood tests used to detect antibodies to HCV. Anti-HCV antibodies can be detected in 80% of patients within 15 weeks after exposure, in >90% within 5 months after exposure, and in >97% by 6 months after exposure. Overall, HCV antibody tests have a strong positive predictive value for exposure to the hepatitis C virus, but may miss patients who have not yet developed antibodies (seroconversion), or have an insufficient level of antibodies to detect. Rarely, people infected with HCV never develop antibodies to the virus and therefore, never test positive using HCV antibody screening. Because of this possibility, RNA testing (see nucleic acid testing methods below) should be considered when antibody testing is negative but suspicion of hepatitis C is high (e.g. because of elevated transaminases in someone with risk factors for hepatitis C).

Anti-HCV antibodies indicate exposure to the virus, but cannot determine if ongoing infection is present. All persons with positive anti-HCV antibody tests must undergo additional testing for the presence of the hepatitis C virus itself to determine whether current infection is present. The presence of the virus is tested for using molecular nucleic acid testing methods such as polymerase chain reaction (PCR), transcription mediated amplification (TMA), or branched DNA (b-DNA). All HCV nucleic acid molecular tests have the capacity to detect not only whether the virus is present, but also to measure the amount of virus present in the blood (the HCV viral load). The HCV viral load is an important factor in determining the probability of response to interferon-based therapy, but does not indicate disease severity nor the likelihood of disease progression.

In people with confirmed HCV infection, genotype testing is generally recommended. HCV genotype testing is used to determine the required length and potential response to interferon-based therapy.

Treatment

There is a very small chance of clearing the virus spontaneously in chronic HCV carriers (0.5 to 0.74% per year), however, the majority of patients with chronic hepatitis C will not clear it without treatment.

Current treatment is a combination of pegylated interferon alpha (brand names Pegasys and PEG-Intron) and the antiviral drug ribavirin for a period of 24 or 48 weeks, depending on genotype. Indications for treatment include patients with proven hepatitis C virus infection and persistent abnormal liver function tests. Sustained cure rates (sustained viral response) of 75% or better occur in people with genotypes HCV 2 and 3 in 24 weeks of treatment, about 50% in those with genotype 1 with 48 weeks of treatment and 65% for those with genotype 4 in 48 weeks of treatment. About 80% of hepatitis C patients in the United States have genotype 1. Genotype 4 is more common in the Middle East and Africa. Should treatment with pegylated ribivirin-interferon not return a 2-log viral reduction or complete clearance of RNA (termed early virological response) after 12 weeks for genotype 1, the chance of treatment success is less than 1%. Early virological response is typically not tested for in non-genotype 1 patients, as the chances of attaining it are greater than 90%. The mechanism of action is not entirely clear, because even patients who appear to have had a sustained virological response still have actively replicating virus in their liver and peripheral blood mononuclear cells.

The evidence for treatment in genotype 6 disease is currently sparse, and the evidence that exists is for 48 weeks of treatment at the same doses as are used for genotype 1 disease.Physicians considering shorter durations of treatment (e.g., 24 weeks) should do so within the context of a clinical trial.

Treatment during the acute infection phase has much higher success rates (greater than 90%) with a shorter duration of treatment; however, this must be balanced against the 15-40% chance of spontaneous clearance without treatment (see Acute Hepatitis C section above).

Those with low initial viral loads respond much better to treatment than those with higher viral loads (greater than 400,000 IU/mL). Current combination therapy is usually supervised by physicians in the fields of gastroenterology, hepatology or infectious disease.

The treatment may be physically demanding, particularly for those with a prior history of drug or alcohol abuse. It can qualify for temporary disability in some cases. A substantial proportion of patients will experience a panoply of side effects ranging from a 'flu-like' syndrome (the most common, experienced for a few days after the weekly injection of interferon) to severe adverse events including anemia, cardiovascular events and psychiatric problems such as suicide or suicidal ideation. The latter are exacerbated by the general physiological stress experienced by the patient.

Current guidelines strongly recommend that hepatitis C patients be vaccinated for hepatitis A and B if they have not yet been exposed to these viruses, as infection with a second virus could worsen their liver disease.

Alcoholic beverage consumption accelerates HCV associated fibrosis and cirrhosis, and makes liver cancer more likely; insulin resistance and metabolic syndrome may similarly worsen the hepatic prognosis. There is also evidence that smoking increases the fibrosis (scarring) rate.

During pregnancy and breastfeeding

If a pregnant woman has risk factors for hepatitis C, she should be tested for antibodies against HCV. About 4% infants born to HCV infected women become infected. There is no treatment that can prevent this from happening. There is a high chance of the baby ridding the HCV in the first 12 months.

In a mother that also has HIV, the rate of transmission can be as high as 19%. There are currently no data to determine whether antiviral therapy reduces perinatal transmission. Ribavirin and interferons are contraindicated during pregnancy. However, avoiding fetal scalp monitoring and prolonged labor after rupture of membranes may reduce the risk of transmission to the infant.

HCV antibodies from the mother may persist in infants until 15 months of age. If an early diagnosis is desired, testing for HCV RNA can be performed between the ages of 2 and 6 months, with a repeat test done independent of the first test result. If a later diagnosis is preferred, an anti-HCV test can performed after 15 months of age. Most infants infected with HCV at the time of birth have no symptoms and do well during childhood. There is no evidence that breast-feeding spreads HCV. To be cautious, an infected mother should avoid breastfeeding if her nipples are cracked and bleeding.

Alternative therapies

Many holistic therapies, such as Traditional Chinese Medicine, Ayurveda, herbalism, and Homeopathy claim success in alleviating symptoms of affected HCV carriers. Most of them address diet, namely eating more healthily, taking more exercise, and use certain herbs which have a long use in boosting immune-systems, clearing toxins out of body tissues, especially the liver, and protecting hepatic cells from damage. There is no one-size-fits-all treatment usually except in some of the routine prescribing going on in the lower practionor echelons of TCM and Ayurveda. Treatment is very individualised to the particular circumstances, the make up of bodily humours, the innate vitality of each person being treated. For example, with herbs, one person might require the liver herb Milkthistle in combination with liquorice and astragalus. But another person would do better on bupleurum and St. John's Wort.

Experimental treatments

The drug viramidine, which is a prodrug of ribavirin that has better targeting for the liver, and therefore may be more effective against hepatitis C for a given tolerated dose, is in phase III experimental trials against hepatitis C. It will be used in conjunction with interferons, in the same manner as ribavirin. However, this drug is not expected to be active against ribavirin-resistant strains, and the use of the drug against infections which have already failed ribavirin/interferon treatment, is unproven.

There are new drugs under development like the protease inhibitors (including VX 950) and polymerase inhibitors (such as NM 283), but development of some of these is still in the early phase. VX 950, also known as Telaprevir is currently in Phase 3 Trials. One protease inhibitor, BILN 2061, had to be discontinued due to safety problems early in the clinical testing. Some more modern new drugs that provide some support in treating HCV are Albuferon, Zadaxin, and DAPY. Antisense phosphorothioate oligos have been targeted to hepatitis C. Antisense Morpholino oligos have shown promise in preclinical studies however, they were found to cause a limited viral load reduction.

Immunoglobulins against the hepatitis C virus exist and newer types are under development. Thus far, their roles have been unclear as they have not been shown to help in clearing chronic infection or in the prevention of infection with acute exposures (e.g. needlesticks). They do have a limited role in transplant patients.

In addition to the standard treatment with interferon and ribavirin, some studies have shown higher success rates when the antiviral drug amantadine (Symmetrel) is added to the regimen. Sometimes called "triple therapy", it involves the addition of 100 mg of amantadine twice a day. Studies indicate that this may be especially helpful for "nonresponders" - patients who have not been successful in previous treatments using interferon and ribavirin only. Currently, amantadine is not approved for treatment of Hepatitis C, and studies are ongoing to determine when it is most likely to benefit the patient. Followup studies have shown no benefit to adding this drug and currently it is not commonly used by experienced hepatologists.

Epidemiology

Prevalence of Hepatitis C worldwide (1999, WHO)

Hepatitis C infects nearly 200 million people worldwide and 4 million in the United States. There are about 35,000 to 185,000 new cases a year in the United States, and hepatitis C is the leading cause of liver transplant in the USA. Co-infection with HIV is common and rates among HIV positive populations are higher. 10,000-20,000 deaths a year in the United States are from HCV; expectations are that this mortality rate will increase, as those who were infected by transfusion before HCV testing become apparent. A survey conducted in California showed prevalence of up to 34% among prison inmates; 82% of subjects diagnosed with hepatitis C have previously been in jail, and transmission while in prison is well described.

Prevalence is higher in some countries in Africa and Asia. Egypt has the highest seroprevalence for HCV, up to 20% in some areas. There is a hypothesis that the high prevalence is linked to a now-discontinued mass-treatment campaign for schistosomiasis, which is endemic in that country. Regardless of how the epidemic started, a high rate of HCV transmission continues in Egypt, both iatrogenically and within the community and household.

Co-infection with HIV

Approximately 350,000, or 35% of patients in the USA infected with HIV are also infected with the hepatitis C virus, mainly because both viruses are blood-borne and present in similar populations. In other countries co-infection is less common, and this is possibly related to differing drug policies.[citation needed] HCV is the leading cause of chronic liver disease in the USA. It has been demonstrated in clinical studies that HIV infection causes a more rapid progression of chronic hepatitis C to cirrhosis and liver failure. This is not to say treatment is not an option for those living with co-infection

Prevention

The following guidelines will prevent infection with the hepatitis C virus, which is spread by blood:

* Avoid sharing drug needles or any other drug paraphernalia including works for injection or bills or straws
* Avoid unsanitary tattoo methods
* Avoid unsanitary body piercing methods
* Avoid unsanitary acupuncture
* Avoid needlestick injury
* Avoid sharing personal items such as toothbrushes, razors, and nail clippers.
* Use latex condoms correctly and every time you have sex if not in a long-term monogamous relationship

Proponents of harm reduction believe that strategies such as the provision of new needles and syringes, and education about safer drug injection procedures, greatly decreases the risk of hepatitis C spreading between injecting drug users.

No vaccine protects against contracting hepatitis C, or helps to treat it. Vaccines are under development and some have shown encouraging results

History

In the mid 1970s, Harvey J. Alter, Chief of the Infectious Disease Section in the Department of Transfusion Medicine at the National Institutes of Health, and his research team demonstrated that most post-transfusion hepatitis cases were not due to hepatitis A or B viruses. Despite this discovery, international research efforts to identify the virus, initially called non-A, non-B hepatitis (NANBH), failed for the next decade. In 1987, Michael Houghton, Qui-Lim Choo, and George Kuo at Chiron Corporation, collaborating with Dr. D.W. Bradley from CDC, utilized a novel molecular cloning approach to identify the unknown organism. In 1988, the virus was confirmed by Alter by verifying its presence in a panel of NANBH specimens. In April of 1989, the discovery of the virus, re-named hepatitis C virus (HCV), was published in two articles in the journal Science.

Chiron filed for several patents on the virus and its diagnosis. A competing patent application by the CDC was dropped in 1990 after Chiron paid $1.9 million to the CDC and $337,500 to Bradley. In 1994 Bradley sued Chiron, seeking to invalidate the patent, have himself included as a co-inventor, and receive damages and royalty income. He dropped the suit in 1998 after losing before an appeals court.

In 2000, Drs. Alter and Houghton were honored with the Lasker Award for Clinical Medical Research for "pioneering work leading to the discovery of the virus that causes hepatitis C and the development of screening methods that reduced the risk of blood transfusion-associated hepatitis in the U.S. from 30% in 1970 to virtually zero in 2000.

In 2004 Chiron held 100 patents in 20 countries related to hepatitis C and had successfully sued many companies for infringement. Scientists and competitors have complained that the company hinders the fight against hepatitis C by demanding too much money for its technology.

Hepatitis D

Hepatitis D


Hepatitis D, also referred to as Hepatitis D virus (HDV) and classified as Hepatitis delta virus, is a disease caused by a small circular RNA virus. HDV is considered to be a subviral satellite because it can propagate only in the presence of another virus, the Hepatitis B virus (HBV). Transmission of HDV can occur either via simultaneous infection with HBV (coinfection) or via infection of an individual previously infected with HBV (superinfection).

Both superinfection and coinfection with HDV results in more severe complications compared to infection with HBV alone. These complications include a greater likelihood of experiencing liver failure in acute infections and a greater likelihood of developing liver cancer in chronic infections. In combination with hepatitis B virus, hepatitis D has the highest mortality rate of all the hepatitis infections of 20%.


Virology

Genome

The HDV genome exists as a negative sense, single-stranded, closed circular RNA. Because of a nucleotide sequence that is 70% self-complementary, the HDV genome forms a partially double stranded RNA structure that is described as rod-like.With a genome of approximately 1700 nucleotides, HDV is the smallest "virus" known to infect animals.

It has been proposed that HDV may have originated from a class of plant viruses called viroids. Evidence in support of this hypothesis stems from the fact that both HDV and viroids exist as single-stranded, closed circular RNAs that have rod-like structures. Likewise, both HDV and viroids contain RNA sequences that can assume catalytically active structures called ribozymes. During viral replication, these catalytic RNAs are required in order to produce unit length copies of the genome from longer RNA concatamers. Finally, neither HDV nor viroids encode their own polymerase. Instead, replication of HDV and viroids requires a host polymerase that can utilize RNA as a template.[5] RNA polymerase II has been implicated as the polymerase responsible for the replication of HDV. Normally RNA polymerase II utilizes DNA as a template and produces mRNA. Consequently, if HDV indeed utilizes RNA polymerase II during replication, it would be the only known pathogen capable of using a DNA-dependent polymerase as an RNA-dependent polymerase.

Delta antigens

A significant difference between viroids and HDV is that, while viroids produce no proteins, HDV produces two proteins called the small and large delta antigens (HDAg-S and HDAg-L, respectively). These two proteins are produced from a single open reading frame. They are identical for 195 amino acids and differ only by the presence of an additional 19 amino acids at the C-terminus of HDAg-L. Despite having 90% identical sequences, these two proteins play diverging roles during the course of an infection. HDAg-S is produced in the early stages of an infection and is required for viral replication. HDAg-L, in contrast, is produced during the later stages of an infection, acts as an inhibitor of viral replication, and is required for assembly of viral particles.

Transmission

HDV is rare in most developed countries, and is mostly associated with intravenous drug abuse. However HDV is much more common in Mediterranean countries, sub-Saharan Africa, the Middle East, and countries in the northern part of South America. In all, about 20 million people may be infected with HDV.

Popular culture

In the mythology of the HBO series True Blood, Hepatitis D (referred to simply as "Hep D") is revealed to be the only known virus to affect a vampire's immune system, weakening those vampires infected for up to a month and rendering them susceptible to being captured and "staked" by humans.

Hepatitis D is referred to in Squidbillies, where a character is described by a doctor as having "Hepatitis D...which I didn't even know existed".

Hepatitis E

Hepatitis E is a viral hepatitis (liver inflammation) caused by infection with a virus called hepatitis E virus (HEV). HEV virus is a positive-strand RNA icosahedral virus with a 7.5 kb genome. HEV has a fecal-oral transmission route. Infection with this virus was first documented in 1955 during an outbreak in New Delhi, India.[1]
Contents


Molecular biology

Although it was originally classified in the Caliciviridae family, the virus has since been classified into the genus Hepevirus of the family Hepeviridae. The virus itself is a small non-enveloped particle.

The genome is approximately 7200 bases in length, is a polyadenylated single-strand RNA molecule that contains three discontinuous and partially overlapping open reading frames (ORFs) along with 5' and 3' cis-acting elements, which have important roles in HEV replication and transcription. ORF1 encode a methyltransferase, protease, helicase and replicase; ORF2 encode the capsid protein and ORF3 encodes a protein of undefined function.

There are currently (2009) approximately 1,600 sequences of HEV that are already available of both human and animal isolates.

Although there is one serotype of this virus, four distinct genotypes have been reported. Genotypes 1 and 2 are restricted to humans and often associated with large outbreaks and epidemics in developing countries with poor sanitation conditions. Genotypes 3 and 4 infect humans, pigs and other animal species and have been responsible for sporadic cases of hepatitis E in both developing and industrialized countries.

An avian virus has been described that is associated with Hepatitis-Splenomegaly syndrome in chickens. This virus is genetically and antigenically related to mammalian HEV and probably represents a new genus in the family.

Replicative virus has been found in the small intestine, lymph nodes, colon as well as the liver of experimentally infected pigs. An in vitro culture system is not yet available. Despite this difficulty a number of vaccine candidates are under investigation.

Epidemiology

The incidence of hepatitis E is highest in adults between the ages of 15 and 40. Though children often contract this infection as well, they less frequently become symptomatic. Mortality rates are generally low, for Hepatitis E is a “self-limiting” disease, in that it usually goes away by itself and the patient recovers. However, during the duration of the infection (usually several weeks), the disease severely impairs a person’s ability to work, care for family members, and obtain food. Hepatitis E occasionally develops into an acute severe liver disease, and is fatal in about 2% of all cases. Clinically, it is comparable to hepatitis A, but in pregnant women the disease is more often severe and is associated with a clinical syndrome called fulminant hepatic failure. Pregnant women, especially those in the third trimester, suffer an elevated mortality rate from the disease ~20%.

Patterns

Hepatitis E is prevalent in most developing countries, and common in any country with a hot climate. It is widespread in Southeast Asia, northern and central Africa, India, and Central America. It is spread mainly through fecal contamination of water supplies or food; person-to-person transmission is uncommon. Outbreaks of epidemic Hepatitis E most commonly occur after heavy rainfalls and monsoons because of their disruption of water supplies. Major outbreaks have occurred in New Delhi, India (30,000 cases in 1955-1956), Burma (20,000 cases in 1976-1977), Kashmir, India (52,000 cases in 1978), Kanpur, India (79,000 cases in 1991), and China (100,000 cases between 1986 and 1988).

Animals as a reservoir

Domestic animals have been reported as a reservoir for the hepatitis E virus, with some surveys showing infection rates exceeding 95% among domestic pigs. Transmission after consumption of wild boar meat and uncooked deer meat has been reported as well.The rate of transmission to humans by this route and the public health importance of this are however still unclear.

A number of rodents have been identified as potential reservoirs: the Lesser Bandicoot Rat (Bandicota bengalensis), the Black Rat (Rattus rattus brunneusculus) and the Asian House Shrew (Suncus murinus).

Recent outbreaks

In 2004, there were two major outbreaks, both of them in sub-Saharan Africa. There was an outbreak in Chad in which, as of September 27 there were 1,442 reported cases and 46 deaths. In Sudan, which has been troubled with conflict recently (see, Darfur conflict), they are also suffering from a severe Hepatitis E epidemic. As of September 28, there were 6,861 cases and 87 deaths, mainly in the West Darfur Region. UNICEF, Doctors Without Borders, the Red Cross, and other international health organizations are currently working to increase the availability of soap, dig new wells, and chlorinate water supplies and reserves. However, the existing resources are still not enough, and more personnel and funds are severely needed in the region to assure the health and welfare of the people. Increasingly, hepatitis E is being seen in developed nations with reports of cases in the UK, US and Japan. The disease is thought to be a zoonosis in that animals are thought to be the source. Both deer and pigs have been implicated.

Prevention

Improving sanitation is the most important measure, which consists of proper treatment and disposal of human waste, higher standards for public water supplies, improved personal hygiene procedures and sanitary food preparation. Thus, prevention strategies of this disease are similar to those of many others that plague developing nations, and they require large-scale international financing of water supply and water treatment projects. A vaccine based on recombinant viral proteins has been developed and recently tested in a high-risk population (military personnel of a developing country).[6] The vaccine appeared to be effective and safe, but further studies are needed to assess the long-term protection and the cost-effectiveness of hepatitis E vaccination.

Hepatitis F

Hepatitis F is a hypothetical virus linked to hepatitis. Several hepatitis F candidates emerged in the 1990s; none of these reports have been substantiated.

Most recently, in 1994 Deka et al reported that novel viral particles had been discovered in the stool of post-transfusion, non-hepatitis A, non-hepatitis B, non-hepatitis C, non-hepatitis E patients.Injection of these particles, into the bloodstream of Indian rhesus monkeys caused hepatitis, and the virus was named hepatitis F, or Toga virus. Further investigations failed to confirm the existence of the virus, and it was delisted as a cause for infectious hepatitis.

A subsequently-discovered virus thought to cause hepatitis was named Hepatitis G, though its role in hepatitis has not been confirmed and it is now considered synonymous with GB virus C and is an "orphan virus" with no causal links to any human disease.

GB virus C (GBV-C)

GB virus C (GBV-C) is a species of virus in the Flaviviridae family which has not yet been assigned to a genus, is known to infect humans, but is not known to cause human disease. There have been reports that HIV patients coinfected with GBV-C can survive longer than those without GBV-C, but the patients may be different in other ways. There is current active research into the virus' effects on the immune system in patients coinfected with GBV-C and HIV.
Contents


* 1 History
* 2 Taxonomy
* 3 Human infection
* 4 References
* 5 External links

History

Hepatitis G virus and GB virus C (GBV-C) are RNA viruses that were independently identified in 1995, and were subsequently found to be two isolates of the same virus. Although GBV-C was initially thought to be associated with chronic hepatitis, extensive investigation failed to identify any association between this virus and any clinical Taxonomy

GBV-C is a member of the Flaviviridae family and is phylogenetically related to hepatitis C virus but appears to replicate primarily in lymphocytes, and poorly if at all in hepatocytes. GBV-A and GBV-B are probably Tamarin viruses, while GBV-C infects

Human infection

The majority of immune-competent individuals appear to clear GBV-C viraemia within the first few years following infection and although the time interval between GBV-C infection and clearance of viraemia (detection of GBV-C RNA in plasma) is not known, infection may persist for decades in some individuals.

Approximately 2% of healthy US blood donors are viraemic with GBV-C, and up to 13% of blood donors have antibodies to E2 protein, indicating prior infection.

Parenteral, sexual and vertical transmission of GBV-C have all been documented, and because of shared modes of transmission, individuals infected with HIV are commonly co-infected with GBV-C. Among people with HIV infection, the prevalence of GBV-C viraemia ranges from 14 to 43%.

Some studies have suggested that co-infection with GBV-C will actually slow the progression of HIV disease.

Thursday, April 23, 2009

FATTY LIVER DISEASE- NAFLD

NAFLD refers to a group of conditions where there is accumulation of excess fat in the liver of people who drink little or no alcohol. The most common form of NAFLD is a non serious condition called fatty liver. In fatty liver, fat accumulates in the liver cells. Although having fat in the liver is not normal, by itself it probably does not damage the liver. A small group of people with NAFLD may have a more serious condition named non-alcoholic steatohepatitis (NASH). In NASH, fat accumulation is associated with liver cell inflammation and different degrees of scarring. NASH is a potentially serious condition that may lead to severe liver scarring and cirrhosis. Cirrhosis occurs when the liver sustains substantial damage, and the liver cells are gradually replaced by scar tissue (see figure), which results in the inability of the liver to work properly. Some patients who develop cirrhosis may eventually require a liver transplant (surgery to remove the damaged liver and replace it with a “new” liver).

Liver Biopsy Liver biopsy is the undisputed best way to assess liver fibrosis or cirrhosis; however, it is an invasive proced

Liver Biopsy
Liver biopsy is the undisputed best way to assess liver fibrosis or cirrhosis; however, it is an invasive procedure that can cause rare, but potentially life-threatening complications. Researchers have been seeking less invasive ways to diagnose liver disease, developing and testing clinical tools, like the Original European Liver Fibrosis Panel and transient elastography.

Artificial Liver Support System

Is the only treatment for end-stage liver disease, but many patients die before receiving a transplant due to the severe shortage of donor organs. Researchers, therefore, have explored various liver assist technologies, or "artificial livers," to keep patients alive while waiting for a transplant.

San Diego, CA -- January 7, 2009 -- Vital Therapies, Inc. (VTI), a development stage company targeting liver disease, today announced patient enrollment has begun for a randomized, controlled, multi-center, Phase 2 clinical trial that will study the Extracorporeal Liver Assist Device (ELAD) as a treatment for patients with Acute Liver Failure (ALF) under three protocols. The study is open for enrollment at seven U.S. sites, which will be expanded to 15 sites in the U.S. and Europe during the first half of 2009. Six patients have already been enrolled in the first protocol and four patients have been treated under the emergency use Expanded Access regulations.

What is AIDS??

A serious (often fatal) disease of the immune system transmitted through blood products especially by sexual contact or contaminated needles.

Human immunodeficiency virus (HIV) is a lentivirus (a member of the retrovirus family) that can lead to acquired immunodeficiency syndrome (AIDS), a condition in humans in which the immune system begins to fail, leading to life-threatening opportunistic infections. Previous names for the virus include human T-lymphotropic virus-III (HTLV-III), lymphadenopathy-associated virus (LAV), and AIDS-associated retrovirus (ARV).[1][2]
Infection with HIV occurs by the transfer of blood, semen, vaginal fluid, pre-ejaculate, or breas milk. Within these bodily fluids, HIV is present as both free virus particles and virus within infected immune cells. The four major routes of transmission are unprotected sexual intercourse, contaminated needles, breast milk, and transmission from an infected mother to her baby at birth (Vertical transmission). Screening of blood products for HIV has largely eliminated transmission through blood transfusions or infected blood products in the developed world.

What is Cancer?

"Cancer" is an abnormal growth of cells anywhere in the body. It occurs when the genes in a cell allow it to split (make new cells) without control.
There are many kinds of cancer, because there are many kinds of cells in the body, and because there are many genes that control cell growth.
Some cancers form solid growths called tumors. Others, like cancers of the blood (leukemias) travel all over the body.
Cancers may harm the body in two ways. They may replace normal cells with cells that don't work properly, and they may kill normal cells.
Sometimes cancers stay put. Sometimes they spread to nearby organs. Sometimes they shed cells into the bloodstream or lymphatic system and travel to distant parts of the body.
The farther a cancer spreads, the harder it is to control. The distant spread of cancer, called "metastasis," is dangerous, because a number of vital organs may be harmed at once.
Many things may cause cancer by affecting the genes that control cell growth. The most common causes of cancer in Rhode Island are tobacco, unbalanced diets (diets with too much fat and red meat, and not enough fruits and vegetables), and too much sunlight. We can control many causes of cancer by making good choices in our everyday lives.
The National Cancer Institute has a book, Cancer Rates and Risks, which describes the major causes of cancer in the United States. The book refers to causes of cancer as "risk factors for cancer," because "risk" reminds us that getting cancer is "ify," not "certain," when we are exposed to things that may cause cancer.

What is Anemia?

Anemia, one of the more common blood disorders, occurs when the level of healthy red blood cells (RBCs) in the body becomes too low. This can lead to health problems because RBCs contain hemoglobin, which carries oxygen to the body's tissues. anemia can cause a variety of complications, including fatigue and stress on bodily organs.

Anemia can be caused by many things, but the three main bodily mechanisms that produce it are:

* excessive destruction of RBCs
* blood loss
* inadequate production of RBCs

Among many other causes, anemiaanemia can result from inherited disorders, nutritional problems (such as an iron or vitamin deficiency), infections, some kinds of cancer, or exposure to a drug or toxin.

Causes of anemia

Causes of anemia
Anemia Caused by Destruction of RBCs

Hemolytic ("hemo" means blood, "lytic" means destroying) anemia occurs when red blood cells are being destroyed prematurely. (Normally, the lifespan of RBCs is 120 days. In hemolytic anemia, they have a much shorter lifespan.) And the bone marrow (the soft, spongy tissue inside bones that makes new blood cells) simply can't keep up with the body's demand for new cells. This can happen for a variety of reasons. Sometimes, infections or certain medications - such as antibiotics or antiseizure medicines - are to blame.

In a condition known as autoimmune hemolytic anemia, the immune system mistakes RBCs for foreign invaders and begins destroying them. Other children inherit defects in the red blood cells that lead to anemia. Common forms of inherited hemolytic anemia include sickle cell anemia, thalassemia, and glucose-6-phosphate dehydrogenase deficiency.

* Sickle cell anemia is a severe form of anemia found most commonly in people of African heritage, although it can affect those of Caucasian, Saudi Arabian, Indian, and Mediterranean descent. In this condition, the hemoglobin forms long rods when it gives up its oxygen, stretching red blood cells into abnormal sickle shapes. This leads to premature destruction of RBCs, chronically low levels of hemoglobin, and recurring episodes of pain, as well as problems that can affect virtually every other organ system in the body. About 1 out of every 625 African-American children is born with this form of anemia.
* Thalassemia, which usually affects people of Mediterranean, African, and Southeast Asian descent, is marked by abnormal and short-lived RBCs. Thalassemia major, also called Cooley's anemia, is a severe form of anemia in which RBCs are rapidly destroyed and iron is deposited in the skin and vital organs. Thalassemia minor involves only mild anemia and minimal red blood cell changes.
* Glucose-6-phosphate dehydrogenase (G6PD) deficiency most commonly affects men of African heritage, although it has been found in many other groups of people. With this condition the RBCs either do not make enough of the enzyme G6PD or the enzyme that is produced is abnormal and doesn't work well. When someone born with this deficiency has an infection, takes certain medicines, or is exposed to specific substances, the body's RBCs suffer extra stress. Without adequate G6PD to protect them, many red blood cells are destroyed prematurely.

Anemia Caused by Blood Loss

Blood loss can also cause anemia - whether it's because of excessive bleeding due to injury, surgery, or a problem with the blood's clotting ability. Slower, long-term blood loss, such as intestinal bleeding from inflammatory bowel disease (IBD), can also cause anemia. Anemia sometimes results from heavy menstrual periods in teen girls and women. Any of these factors will also increase the body's need for iron because iron is needed to make new RBCs.
Anemia Caused by Inadequate Production of RBCs

Aplastic anemia occurs when the bone marrow can't make enough RBCs. This can be due to a viral infection, or exposure to certain toxic chemicals, radiation, or medications (such as antibiotics, antiseizure drugs, or cancer treatments). Some childhood cancers can also cause aplastic anemia, as can certain chronic diseases that affect the ability of the bone marrow to make blood cells.

High levels of hemoglobin and RBCs help fetal blood carry enough oxygen to developing babies in the relatively oxygen-poor environment in utero. Thus, infants are born with some protection from iron deficiency. After the child is born, more oxygen is available and the baby's hemoglobin level normally drops to a low point at about 2 months of age, a condition known as physiologic anemia of infancy. This temporary and expected drop in the blood count is considered normal and no treatment is required because the infant's body soon starts making red blood cells on its own.

Anemia also occurs when the body isn't able to produce enough healthy RBCs because of an iron deficiency. Iron is essential to hemoglobin production. Poor dietary iron intake (or excessive loss of iron from the body) can lead to iron deficiency anemia, the most common cause of anemia in children. Iron deficiency anemia can affect children at any age, but is most commonly seen in those younger than 2 years old.

Girls going through puberty also have a particularly high risk for iron deficiency anemia because of the onset of menstruation; the monthly blood loss increases the amount of iron they need to consume in their diets.
Gastroenteritis

Definition

Gastroenteritis is a catchall term for infection or irritation of the digestive tract, particularly the stomach and intestine. It is frequently referred to as the stomach or intestinal flu, although the virus is not associated with this illness. Major symptoms include , and abdominal cramps. These symptoms are sometimes also accompanied by and overall weakness. Gastroenteritis typically lasts about three days. Adults usually recover without problem, but children, the elderly, and anyone with an underlying disease are more vulnerable to complications.

Description

Gastroenteritis is an uncomfortable and inconvenient ailment, but it is rarely life-threatening in the United States and other developed nations. However, an estimated 220,000 children younger than age five are hospitalized with gastroenteritis symptoms in the United States annually. Of these children, 300 die as a result of severe diarrhea and dehydration. In developing nations, diarrheal illnesses are a major source of mortality. In 1990, approximately three million deaths occurred worldwide as a result of diarrheal illness.

The most common cause of gastroenteritis is viral infection. Viruses such as rotavirus, adenovirus, astrovirus, and calicivirus and small round-structured viruses (SRSVs) are found all over the world. Exposure typically occurs through the fecal-oral route, such as by consuming foods contaminated by fecal material related to poor sanitation. However, the infective dose can be very low (approximately 100 virus particles), so other routes of transmission are quite probable.

Typically, children are more vulnerable to rotaviruses, the most significant cause of acute watery diarrhea. Annually, worldwide, rotaviruses are estimated to cause 800,000 deaths in children below age five. For this reason, much research has gone into developing a vaccine to protect children from this virus. Adults can be infected with rotaviruses, but these infections typically have minimal or no symptoms.

Children are also susceptible to adenoviruses and astroviruses, which are minor causes of childhood gastroenteritis. Adults experience illness from astroviruses as well, but the major causes of adult viral gastroenteritis are the caliciviruses and SRSVs. These viruses also cause illness in children. The SRSVs are a type of calicivirus and include the Norwalk, Southhampton, and Lonsdale viruses. These viruses are the most likely to produce vomiting as a major symptom.

Bacterial gastroenteritis is frequently a result of poor sanitation, the lack of safe drinking water, or contaminated food-conditions common in developing nations. Natural or man-made disasters can make underlying problems in sanitation and food safety worse. In developed nations, the modern food production system potentially exposes millions of people to disease-causing bacteria through its intensive production and distribution methods. Common types of bacterial gastroenteritis can be linked to Salmonella and Campylobacter bacteria; however, Escherichia coli 0157 and Listeria monocytogenes are creating increased concern in developed nations. and Shigella remain two diseases of great concern in developing countries, and research to develop long-term vaccines against them is underway.

Peptic ulcer


Peptic ulcers are open sores or erosions in the lining of either the duodenum (duodenal ulcers) or the stomach (gastric ulcers). The duodenum is the first part of the small intestine. About 10% of all Americans get ulcers, and they can recur. Contrary to popular belief, ulcers are not caused by spicy food or stress but instead are most commonly due to either an infection or long-term use of certain medications.

Signs and Symptoms:

  • Abdominal pain with a burning or gnawing sensation
  • Pain 2 - 3 hours after eating
  • Pain is often aggravated by an empty stomach; for example, nighttime pain is common
  • Pain may be relieved by antacids or milk
  • Heartburn
  • Indigestion (dyspepsia)
  • Belching
  • Nausea
  • Vomiting
  • Poor appetite
  • Weight loss

If you experience any of the following symptoms, this is considered an emergency and you should call your doctor immediately:

  • Sudden increase in the abdominal pain or sharpness in the quality of the pain
  • Vomiting blood or material that looks like coffee grounds
  • Blood in your stool or black, tarry stools

Causes:

When the stomach's natural protections from the damaging effects of digestive juices (including acid and pepsin, an enzyme that helps breakdown protein) stop working or the acid production is too overwhelming for these protective defenses to work properly, you can get an ulcer. There are a few different ways this happens.

  • Helicobacter pylori (H. pylori) -- H. Pylori, a bacterial organism, is responsible for most ulcers. This organism weakens the protective coating of the stomach and duodenum and allows the damaging digestive juices to irritate the sensitive lining below. Interestingly, as many as 20% of Americans over age 40 have this organism living in their digestive tract, but not all of these people develop ulcers -- most do not.
  • Non-steroidal anti-inflammatory drugs (NSAIDs) -- ongoing use of this class of medications is the second most common cause of ulcers. These drugs (which include aspirin, ibuprofen, naproxen, diclofenac, tolmetin, piroxicam, fenoprofen, indomethacin, oxaprozin, ketoprofen, sulindac, nabumetone, etodolac, and salsalate) are acidic. They block prostaglandins, substances in the stomach that help maintain blood flow and protect the area from injury. Some of the specific drugs listed are more likely to produce ulcers than others. Therefore, if you must use long-term pain medications, talk to your doctor about which ones are safest.
  • Zollinger-Ellison syndrome -- people with this uncommon condition have tumors in the pancreas and duodenum that produce gastrin, a hormone that stimulates gastric acid production. Diarrhea may precede ulcer formation.
  • Other causes of ulcers are conditions that can result in direct damage to the wall of the stomach or duodenum, such as heavy use of alcohol, radiation therapy, burns, and physical injury.

Risk Factors:

  • Genetic factors may predispose you to developing an ulcer
  • Increasing age
  • Chronic pain, from any cause such as arthritis, fibromyalgia, repetitive stress injuries (like carpal tunnel syndrome), or persistent back pain, leading to ongoing use of aspirin or NSAIDs
  • Alcohol abuse
  • Diabetes may increase your risk of having H. pylori
  • Living in crowded, unsanitary conditions increases the risk of H. pylori infection
  • Immune abnormalities may, in theory, make it more likely for H. pylori or other factors to cause damage to the lining of the stomach or duodenum
  • Lifestyle factors, including chronic stress, coffee drinking (even decaf), and smoking, may make you more susceptible to damage from NSAIDs or H. pylori if you are a carrier of this organism. Again, however, these factors do not cause an ulcer on their own.

Diagnosis:

First, your doctor will take a detailed history of your symptoms and risk factors, including how long indigestion and pain have been present, how strong these sensations are, if you have lost weight recently, what medications (over the counter and prescription) you have been taking, your smoking and drinking habits, and if anyone in your family has had ulcers.

As part of the physical exam, your doctor will do a thorough check of your abdomen and chest as well as a rectal exam to look for, in part, any sign of bleeding. A blood test will be drawn to check to see if you are anemic. These types of tests are done to make sure that you have not had any bleeding about which you have been unaware (called occult bleeding).

If there are no signs of bleeding and your symptoms are mild and not serious or life-threatening, your doctor may have you try medications that suppress the amount of acid in your stomach. This is done to see if you feel better, before pursuing expensive and uncomfortable testing. If your symptoms persist or get worse despite the medication, further testing is necessary.

One of two tests will be performed to try to identify an ulcer:

  • Upper gastrointestinal (GI) series
  • Endoscopy

For an upper GI series, you will drink a chalky liquid called barium and then undergo a series of x-rays to check for an ulcer.

Endoscopy, amore accurate test, involves the careful insertion of a thin tube with a tiny camera at the end (called an endoscope) into your mouth, down your throat, through the esophagus to the stomach and duodenum. This allows both direct visualization of these organs for an ulcer or other problems and sampling of tissue from the walls (called biopsies) of the stomach and small intestines to test for H. pylori. You are lightly sedated for this procedure.

Other tests that may be performed to look for H. pylori include a blood test checking for antibodies to this organism, a breath test after drinking a substance called urea, and a stool test looking for the organism in the feces. The breath test, which is the least invasive, is proving to be at least 95% accurate.

Prevention:

Preventing NSAID-related ulcers involves finding different medications or alternative approaches to relieve your pain. Talk to your doctor about your options. If you have to take NSAIDs for a long time, your doctor may consider prescribing another medication to try to prevent the development of ulcers. This medicine may include an H2 blocker (such as cimetidine, famotidine, nizatidine, or ranitidine) or a proton pump inhibitor (such as omeprazole, lansoprazole, or rabeprazole).

You can also make lifestyle changes that make you less prone to get an ulcer from either NSAIDs or H. pylori.

Treatment:

The main goals for treating a peptic ulcer include eliminating the underlying cause (particularly H. pylori infection or use of NSAIDs), preventing further damage and complications, and reducing the risk of recurrence. Medication is almost always needed to alleviate symptoms and must be used to eradicate H. pylori. Surgery is required for certain serious or life-threatening complications of peptic ulcers and may be considered if medications are not working. Even with medications, many lifestyle factors, including making changes in your diet, are important. Plus, certain herbs, acupuncture, or homeopathy may prove to be a useful addition to usual medical care, especially to help relieve symptoms or prevent recurrence.

Lifestyle

Doctors used to recommend eating bland foods with milk and only small amounts of food with each meal. We now know that these eating habits are not necessary for the treatment of ulcers. Dietary and other lifestyle measures that should help, however, include:

  • Eat a diet rich in fiber, especially from fruits and vegetables. This may reduce your risk of developing an ulcer in the first place and may speed your recovery if you already have one. The vitamin A may be an added benefit from these foods.
  • Foods containing flavonoids, like apples, celery, cranberries (including cranberry juice), onions, garlic, and tea may inhibit the growth of H. pylori.
  • Quit smoking.
  • Receive treatment for alcohol abuse; your doctor can help get you appropriate care.
  • Cut down on coffee, including decaffeinated coffee, as well as carbonated beverages all of which can increase stomach acid.
  • Reduce stress with regular use of relaxation techniques, such as yoga, tai chi, qi gong, or meditation. These practices may also help lessen pain and reduce your need for the damaging NSAIDs discussed. To incorporate any one of these techniques into your daily activities, consider taking a class; some early information suggests that, if you have an ulcer, a formal stress reducing program may be more beneficial than listening to tapes on your own at home.

Medications

  • If you have H. pylori, you will probably be prescribed three different medications. "Triple therapy" (including a proton pump inhibitor, such as omeprazole or Prilosec, to reduce acid production and two antibiotics to get rid of the organism) is commonly used to treat H. pylori -related ulcers. A medicine called bismuth salicylate may be recommended in place of one antibiotic. This drug, available over the counter, coats and soothes the stomach, protecting it from the damaging effects of acid. Two drug regimens are currently being developed.

Some of the same drugs are used for non-H. pylori ulcers as well as for symptoms (like indigestion) due to ulcers of any cause:

  • Antacids, available over the counter, may relieve heartburn or indigestion but will not treat an ulcer. Antacids include aluminum hydroxide (Amphojel, AlternaGEL), magnesium hydroxide (Phillips' Milk of Magnesia), aluminum hydroxide and magnesium hydroxide (Maalox, Mylanta), calcium carbonate (Rolaids, Titralac, Tums), and sodium bicarbonate (Alka-Seltzer). Antacids may block medications from being absorbed and thereby decrease the medicine's effectiveness. It is recommended to take antacids at least 1 hour before or 2 hours after taking medications. Ask your pharmacist or doctor for more information.
  • H2 blockers, such as cimetidine (Tagemet), ranitidine (Zantac), nizatidine (Axid®, and famotidine (Pepcid), reduce gastric acid secretion.
  • Proton-pump inhibitors, including esomeprazole (Nexium), lansoprazole (Prevacid), omeprazole (Prilosec), pantoprazole (Protonix), and rabeprazole (Aciphex), decrease gastric acid production.
  • Sucralfate (Carafate) makes a coating over the ulcer crater, protecting it from further damage.

Surgery and Other Procedures

Once hospitalized, if bleeding from an ulcer does not stop by using medications and supportive care (like fluids and, possibly, blood transfusion), it can almost always be stopped via endoscopy. The physician (a gastroenterologist) who performs the procedure first identifies the ulcer and the area that is bleeding. The physician will then inject adrenaline and other medications to stop the bleeding and stimulate the formation of a blood clot. If the bleeding recurs after that procedure or you have a perforated ulcer or an obstruction, surgery may be required. If you do not get better from medical or endoscopic treatment, surgery may be considered. About 30% of people who come to the hospital with a bleeding ulcer need endoscopy or surgery.

Nutrition and Dietary Supplements

Following these nutritional tips may help reduce symptoms:

  • Foods containing flavonoids, like apples, celery, cranberries (including cranberry juice), onions, garlic, and tea may inhibit the growth of H. pylori.
  • Eat antioxidant foods, including fruits (such as blueberries, cherries, and tomatoes), and vegetables (such as squash and bell peppers).
  • Eat foods high in B-vitamins and calcium, such as almonds, beans, whole grains (if no allergy), dark leafy greens (such as spinach and kale), and sea vegetables.
  • Avoid refined foods, such as white breads, pastas, and especially sugar.
  • Eat fewer red meats and more lean meats, cold-water fish, tofu (soy, if no allergy) or beans for protein.
  • Use healthy oils, such as olive oil or vegetable oil.
  • Reduce or eliminate trans-fatty acids, found in commercially baked goods such as cookies, crackers, cakes, French fries, onion rings, donuts, processed foods, and margarine.
  • Avoid beverages that can irritate the lining of the stomach or increase acid production, including coffee (with or without caffeine), alcohol, and carbonated beverages.
  • Drink 6 - 8 glasses of filtered water daily.
  • Exercise at least 30 minutes daily, 5 days a week.

You may address nutritional deficiencies with the following supplements:

  • A multivitamin daily, containing the antioxidant vitamins A, C, E, the B-vitamins, and trace minerals, such as magnesium, calcium, zinc, and selenium.
  • Omega-3 fatty acids, such as fish oil, 1 - 2 capsules or 1 tablespoonful oil 2 - 3 times daily, to help decrease inflammation and improve immunity. Cold-water fish, such as salmon or halibut, are good sources, but supplementation is recommended.
  • Probiotic supplement (containing Lactobacillus acidophilus), 5 - 10 billion CFUs (colony forming units) a day, for maintenance of gastrointestinal and immune health. Some probiotic supplements may need to be refrigerated for best results. Your child may also take probiotic supplements. Talk to your health care provider before giving your child any dietary supplements.
  • Alpha-lipoic acid, 25 - 50 mg twice daily, for antioxidant support.
  • Vitamin C, 500 - 1,000 mg 1 - 3 times daily, as an antioxidant and for immune support.
  • L-glutamine, 500 - 1,000 mg 3 times daily, for support of gastrointestinal health and immunity.
  • Grapefruit seed extract (Citrus paradisi), 100 mg capsule or 5 - 10 drops (in favorite beverage) 3 times daily when needed, for antibacterial, antifungal, and antiviral activity, and for immunity.
  • Resveratrol (from red wine), 50 - 200 mg daily, to help decrease inflammation and for antioxidant effects.

Herbs

Herbs are generally a safe way to strengthen and tone the body's systems. As with any therapy, you should work with your health care provider to get your problem diagnosed before starting any treatment. You may use herbs as dried extracts (capsules, powders, teas), glycerites (glycerine extracts), or tinctures (alcohol extracts). Unless otherwise indicated, you should make teas with 1 tsp. herb per cup of hot water. Steep covered 5 - 10 minutes for leaf or flowers, and 10 - 20 minutes for roots. Drink 2 - 4 cups per day. You may use tinctures alone or in combination as noted.

  • Green tea (Camelia sinensis) standardized extract, 250 - 500 mg daily, for antioxidant, anti-inflammatory, and heart health effects. Use caffeine-free products. You may also prepare teas from the leaf of this herb.
  • Cat's claw (Uncaria tomentosa) standardized extract, 20 mg 3 times a day, for inflammation and antibacterial, or antifungal activity.
  • Reishi mushroom (Ganoderma lucidum), 150 - 300 mg 2 - 3 times daily, for inflammation and for immunity. You may also take a tincture of this mushroom extract, 30 - 60 drops 2 - 3 times a day.
  • Olive leaf (Olea europaea) standardized extract, 250 - 500 mg 1 - 3 times daily, for antibacterial or antifungal activity and immunity. You may also prepare teas from the leaf of this herb.
  • DGL-licorice (Glycyrrhiza glabra) standardized extract, 250 - 500 mg 3 times daily, chewed either 1 hour before or 2 hours after meals. Glycyrrhizin is a chemical found in licorice that causes side effects and drug interactions. DGL is deglycyrrhizinated licorice, or licorice with the glycyrrhizin removed.
  • Mastic (Pistacia lentiscus) standardized extract, 1,000 - 2,000 mg daily in divided dosages, for activity against H. Pylori.
  • Peppermint (Mentha piperita) standardized, enteric coated tablet, 1 tablet 2 - 3 times daily, for symptoms of peptic ulcer. Each tablet contains 0.2 ml peppermint oil.

Homeopathy

Although few studies have examined the effectiveness of specific homeopathic therapies, professional homeopaths may consider the following remedies for the treatment of ulcers or its symptoms, based on their knowledge and experience. Before prescribing a remedy, homeopaths take into account a person's constitutional type -- your physical emotional, and intellectual makeup. An experienced homeopath assesses all of these factors when determining the most appropriate treatment for you individually. For the treatment of ulcers, even if you do seek homeopathic remedies as adjunctive care, conventional treatment recommendations must be followed.

  • Argentum nitricum for abdominal bloating with belching and pain
  • Arsenicum album for ulcers with intense burning pains and nausea; especially for people who cannot bear the sight or smell of food and are thirsty
  • Kali bichromicum for burning or shooting abdominal pain that is worse in the hours after midnight
  • Lycopodium for bloating after eating with burning that lasts for hours; especially for people who feel hungry soon after eating and wake hungry
  • Nitric acid for sharp, shooting pain that worsens at night and is accompanied by feelings of hopelessness and even fear of dying
  • Nux vomica for digestive disturbances (including heartburn and indigestion) that worsen after eating; particularly for those who crave alcohol, coffee, and tobacco
  • Phosphorus for burning stomach pain that worsens at night; those for whom this remedy is appropriate tend to feel very thirsty, craving cold beverages
  • Pulsatilla for symptoms that vary (that is, change abruptly) and pain that gets worse from fatty foods; appropriate people are distinctly not thirsty

Acupuncture

Acupuncture has been used traditionally for a variety of conditions related to the gastrointestinal tract, including peptic ulcers. A growing body of scientific evidence suggests that acupuncture can help reduce pain associated with endoscopy (the procedure used, as described earlier, to make a diagnosis of ulcer or to treat its complications).

Chiropractic

Chiropractors report and preliminary evidence suggests that spinal manipulation may benefit some individuals with uncomplicated gastric or duodenal ulcers. In one small clinical study, researchers compared the effectiveness of medication to spinal manipulation over a period of up to 22 days. Participants who received spinal manipulation experienced significant pain relief after an average of 4 days and were completely free of symptoms on average 10 days earlier than those who took medication. More research is needed to understand when and how chiropractic might be helpful if you have peptic ulcer disease.

Other Considerations:

Pregnancy

If you are pregnant or breastfeeding, talk to your doctor before taking any medication, including herbs.

Prognosis and Complications

With proper treatment, most ulcers heal within 6 - 8 weeks. However, they may recur, particularly if H. pylori is not treated sufficiently.

Complications from ulcers include bleeding, perforation (rupture) of either the stomach or the duodenum, and bowel obstruction. Each of these problems can be very serious, even life-threatening. Bleeding, which is much less common today because of appropriate and fast medical treatment, occurs in up to 15% of people with peptic ulcers. Obstruction tends to happen where the stomach meets the small intestines. If there is an ulcer at this junction, swelling can occur, blocking the passage of food products through the gastrointestinal tract. If this happens, significant vomiting is generally the main symptom.

H. pylori ulcers increase the risk of stomach cancer.

The good news is that the incidence of ulcers and their complications continue to decline as people seek treatment for symptoms early and doctors respond quickly to eliminate symptoms and the causes, like H. pylori and NSAIDs.